Checking UML and OCL Model Consistency: An Experience Report on a Middle-Sized Case Study

Martin Gogolla, Lars Hamann, Frank Hilken, Matthias Sedlmeier University of Bremen, Database Systems Group

Motivation and context

- consider models in form of UML class diagrams and enriched by OCL invariants
- support development of such models with the tool USE (Uml-based Specification Environment)
- USE gives support for object, statechart, sequence and communication diagrams and imperative operation implementation
- model validator on basis of Kodkod automatically constructs object diagrams for UML and OCL models
- prove model properties
 - model consistency, i.e., automatically construct a valid model instance
- consider example model representing the transformation between the Entity-Relationship (ER) and the relational data model; consider schemata and states for both data models

ER schema		ER states		
Rel. DB Schema	Transformation	Rel. DB States		
[Svntax]		[Semantics]		

ER Schema

ER State

Rel. DB Schema

Transformation

Rel. DB State

Case study class diagram and invariants

- Class diagram
 - 18 classes
 - 34 associations
 - 10 OCL helper operations
- 59 Invariants

. . .

- within one table, two distinct attributes have distinct names
- every table must have at least one key attribute
- all tuples in relational DB state have unique key attribute values
- every entity is transformed into a table
- every relationship is transformed into a table
- every tuple (in a relational DB state) is transformed either into
 - an instance (typed by an entity) or
 - a link (typed by a relationship)

Example invariant

context self:Er2Rel Trans inv forTupleExistsOneInstanceXorLink:

```
self.relDBState->forAll(relSt | self.erState->one(erSt |
relSt.tuple->forAll(t |
```

```
erSt.instance->one(i |
    t.attrMap->forAll(amRel | i.attrMap->one(amEr |
    amEr.attribute.name=amRel.attribute.name and
    amEr.value=amRel.value)))
```

xor

```
erSt.link->one(l | t.attrMap->forAll(amRel |
  ( amRel.attribute.isKey=false implies
    l.attrMap->one(amEr |
        amEr.attribute.name=amRel.attribute.name and
        amEr.value=amRel.value) )
  and
  ( amRel.attribute.isKey=true implies
    l.relendMap->one(rm |
        rm.instance.attrMap->
        select(amEr | amEr.attribute.isKey)->one(amEr |
        amRel.attribute.name =
        plus(times10(rm.relend.name),amEr.attribute.name) and
        amRel.value=amEr.value))))))))
```

USE model validator and configuration

- USE Model validator
 - automatically construct object diagram
 - based on translation of UML and OCL into relational logic and implemented in form of Alloy and Kodkod
 - model validator uses Kodkod
 - translate found results back into UML
- Configuration
 - guarantees: models elements (classes, attributes, associations, datatypes) are populated with finite sets
- Building an object diagram shows consistency of invariants

18 configurations: grey classes 1..9 objects, assocs 0..* or 1..*

Num Objects	Num Links	USE Response	Times [in milliseconds]			
			Translation	Translation	Solv	ing
11	0*	trivially unsat	$358 \mathrm{\ ms}$	202 ms	0	\mathbf{ms}
12	0*	unsat	328 ms	$811 \mathrm{ms}$	31	\mathbf{ms}
13	0*	unsat	$359 \mathrm{\ ms}$	3292 ms	827	\mathbf{ms}
14	0*	sat	$359 \mathrm{\ ms}$	$11092~\mathrm{ms}$	8205	\mathbf{ms}
15	0*	sat	327 ms	$31231 \mathrm{\ ms}$	45022	\mathbf{ms}
16	0*	sat	328 ms	$73445 \mathrm{\ ms}$	8533	\mathbf{ms}
17	0*	sat	$327 \mathrm{ms}$	$158839~\mathrm{ms}$	231053	\mathbf{ms}
18	0*	sat	$343 \mathrm{ms}$	$301907~\mathrm{ms}$	149480	\mathbf{ms}
19	0*	sat	$343 \mathrm{\ ms}$	$557427~\mathrm{ms}$	459233	\mathbf{ms}
11	1*	trivially unsat	312 ms	203 ms	0	\mathbf{ms}
12	1*	unsat	328 ms	$827 \mathrm{\ ms}$	16	\mathbf{ms}
13	1*	unsat	$343 \mathrm{ms}$	$3338 \mathrm{\ ms}$	78	\mathbf{ms}
14	1*	unsat	$340 \mathrm{ms}$	$10951 \mathrm{\ ms}$	219	\mathbf{ms}
15	1*	unsat	$343 \mathrm{\ ms}$	$30857 \mathrm{\ ms}$	3572	\mathbf{ms}
16	1*	sat	375 ms	$74412 \mathrm{\ ms}$	134878	\mathbf{ms}
17	1*	sat	$343 \mathrm{ms}$	157264 ms	17628	\mathbf{ms}
18	1*	sat	$394 \mathrm{ms}$	$301315 \mathrm{\ ms}$	120432	\mathbf{ms}
19	1*	sat	$375 \mathrm{\ ms}$	$551758~\mathrm{ms}$	607059	\mathbf{ms}

Fig. 4. Applied 18 model validator configurations and USE results.

All classes and assocs instantiated; construction time: ca. 200.000 ms ≈ 3.5 mins

Conclusion

- presented a case study for automatically checking model properties
 - instantiated a class diagram with 18 classes, 34 assocs, 59 invs by an object diagram with 32 objects and 67 links in 3.5 mins
 - consistency, i.e., class instantiability, class and association instantiability
 - approach can also check for implied model properties
- model validator based on relational model finder Kodkod
- relationship to Tests And Proofs (TAP): build a test case (object diagram) and by this prove that a property (consistency) holds

Future work

- handling of strings has to be improved
- incorporation of model behavior: filmstripping
- <u>observation terms</u> in the case that not only one solution, but all solutions should be considered; achieve substantially different solutions, i.e. object diagrams
- show invariant independence for the example transformation model
- further larger case studies must check the practicability

Thanks for your attention!