
Checking UML and OCL Model Consistency:
An Experience Report on a Middle-Sized Case Study

Martin Gogolla, Lars Hamann, Frank Hilken, Matthias Sedlmeier
University of Bremen, Database Systems Group

Motivation and context

- consider models in form of UML class diagrams and enriched by
 OCL invariants

- support development of such models with the tool USE
 (Uml-based Specification Environment)

- USE gives support for object, statechart, sequence and
 communication diagrams and imperative operation implementation

- model validator on basis of Kodkod automatically constructs
 object diagrams for UML and OCL models

- prove model properties

 - model consistency, i.e., automatically construct a valid
 model instance

- consider example model representing the transformation between
 the Entity-Relationship (ER) and the relational data model;
 consider schemata and states for both data models

 ER schema ER states
 Transformation
 Rel. DB Schema Rel. DB States

 [Syntax] [Semantics]

Transformation

ER State

Rel. DB Schema Rel. DB State

ER Schema

Case study class diagram and invariants

- Class diagram

 - 18 classes
 - 34 associations
 - 10 OCL helper operations

- 59 Invariants

 - within one table, two distinct attributes have distinct names
 - every table must have at least one key attribute

 - all tuples in relational DB state have unique key attribute values

 - every entity is transformed into a table
 - every relationship is transformed into a table
 - every tuple (in a relational DB state) is transformed either into
 - an instance (typed by an entity) or
 - a link (typed by a relationship)

 ...

Example invariant

context self:Er2Rel_Trans inv forTupleExistsOneInstanceXorLink:

 self.relDBState->forAll(relSt | self.erState->one(erSt |
 relSt.tuple->forAll(t |

 erSt.instance->one(i |
 t.attrMap->forAll(amRel | i.attrMap->one(amEr |
 amEr.attribute.name=amRel.attribute.name and
 amEr.value=amRel.value)))

 xor

 erSt.link->one(l | t.attrMap->forAll(amRel |
 (amRel.attribute.isKey=false implies
 l.attrMap->one(amEr |
 amEr.attribute.name=amRel.attribute.name and
 amEr.value=amRel.value))
 and
 (amRel.attribute.isKey=true implies
 l.relendMap->one(rm |
 rm.instance.attrMap->
 select(amEr | amEr.attribute.isKey)->one(amEr |
 amRel.attribute.name =
 plus(times10(rm.relend.name),amEr.attribute.name) and
 amRel.value=amEr.value))))))))

USE model validator and configuration

- USE Model validator
 - automatically construct object diagram
 - based on translation of UML and OCL into relational logic and
 implemented in form of Alloy and Kodkod
 - model validator uses Kodkod
 - translate found results back into UML

- Configuration
 - guarantees: models elements (classes, attributes, associations,
 datatypes) are populated with finite sets

- Building an object diagram shows consistency of invariants

18 configurations: grey classes 1..9 objects, assocs 0..* or 1..*

All classes and assocs instantiated; construction time: ca. 200.000 ms ≈ 3.5 mins

Conclusion

- presented a case study for automatically checking
 model properties

 - instantiated a class diagram with 18 classes, 34 assocs, 59 invs by
 an object diagram with 32 objects and 67 links in 3.5 mins

 - consistency, i.e., class instantiability,
 class and association instantiability

 - approach can also check for implied model properties

- model validator based on relational model finder Kodkod

- relationship to Tests And Proofs (TAP): build a test case
 (object diagram) and by this prove that a property (consistency) holds

Future work

- handling of strings has to be improved

- incorporation of model behavior: filmstripping

- `observation terms´ in the case that not only one solution,
 but all solutions should be considered; achieve substantially
 different solutions, i.e. object diagrams

- show invariant independence for the example transformation model

- further larger case studies must check the practicability

Thanks for your attention!

